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Abstract

This paper proposes a framework for assessing whether misspecified de-

cision makers would be willing to pay for information that can potentially

make them less misspecified. We introduce a prior-free approach, based on

“constrained” maximal regret, to derive an upper bound on the subjective

assessment of potential gains from acquiring a more accurate model. The

constraint stems from the information currently available to the decision

maker. We apply our approach to three prominent models of misspecified

beliefs: coarse expectations, causal misperceptions and sampling equilibria.
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A common feature of many models in this literature is that they typically

take as given the decision-makers’ particular form of misspecification and its de-

gree. For instance, in sampling equilibrium (Osborne and Rubinstein, 1998), the

decision-maker may form his beliefs about the mapping from actions to conse-

quences based on one, two, or any other number of samples of outcomes resulting

from his past actions. Or, in analogy-based expectation equilibrium (Jehiel, 2005),

a player may group her opponents’ types into one, two, or any other number of

“analogy classes,” and form beliefs according to the average behavior observed

within each class. However, in these cases and others, a natural question arises:

how does the decision-maker arrive at these particular degrees of misspecifica-

tions to begin with? And, in particular, if a decision-maker suspects that his

model of the environment is not perfectly accurate, why does he not attempt to

reduce his error by acquiring more knowledge?

One possible answer is that more data is simply not available – if there exists

only a single sample for the past consequence of each of the decision maker’s ac-

tions, then he must make a decision based solely on this information. Another

answer might be that the decision-maker is just completely unaware of his mis-

specification. While this may be true in certain cases, oftentimes reality is more

nuanced. Indeed, in many situations decision-makers are aware that they do not

fully understand the relationship between actions and consequences in the envi-

ronment they operate in, yet they still do not engage in improving their model,

even when data can be collected.

A possible explanation for this behavior is that acquiring more data may be

costly. In this case, if the costs exceed the benefits, it is a “rational” choice for the

decision-maker to remain misspecified. However, this raises another conceptual

question: how can a misspecified decision-maker compute the benefit of becoming

less misspecified?1 Our goal in this paper is to propose a framework for rational

misspecification and to evaluate its implications in several settings.

To illustrate the challenge, consider a two-player Bayesian game between Alice

and Bob, in which Bob forms expectations about Alice’s behavior using coarse

data on her strategy, as in analogy-based expectation equilibrium (Jehiel, 2005).

Specifically, suppose that although Alice’s strategy depends on her type, which

is relevant for Bob’s payoff, Bob knows only the overall distribution of Alice’s

1In the context of analogy-based expectation equilibrium, Jehiel (2022) highlighted the dif-
ficulty of employing a cost-benefit analysis to endogenize a decision-maker’s analogy partition,
stating that “it is not clear how players would have the correct understanding about how their
choices of analogy partitions translate into true payoffs.”
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actions, irrespective of her type. Now, suppose Bob is given the opportunity to

refine his data by learning the distribution of Alice’s actions conditional on her

type belonging to each cell of some partition of her types. Clearly, this additional

knowledge can only improve Bob’s decision-making. But how can he quantify the

extent of this improvement?

Although the basic idea that individuals weigh costs and benefits when de-

ciding whether to become more informed appears also in the literature on costly

information acquisition, there is an inherent conceptual difference between the

two problems. The distinction lies in the difficulty of the misspecified decision-

maker to quantify the benefits of acquiring additional data. For example, in the

rational inattention literature (e.g., Sims (2003) and Maćkowiak et al. (2023)) an

uninformed decision-maker has to decide which information structure to acquire.

To evaluate the expected benefit of any given information structure, the decision-

maker relies on one of the framework’s primitives – the true prior distribution

over the states – to form beliefs about the possible consequences of learning. In

contrast, a misspecified decision-maker operates with an erroneous model of the

steady-state and needs to form beliefs about the expected gain from employing a

more precise model. Short of exogenously imposing some arbitrary prior beliefs

on the set of correct models, there is no primitive of the environment to guide the

decision-maker in forming these beliefs.

In the absence of an objective prior beliefs on the set of models, there are myr-

iad ways to form beliefs about what one might learn from acquiring more data.

In this paper we propose an upper bound on the subjective assessment of the

expected gain from learning a more accurate model. This upper bound is com-

puted by finding a new stochastic mapping from actions to consequences that

satisfies the following properties: (i) it is consistent with the partial but correct

information on the true mapping derived from the decision-maker’s current mis-

specified model, and (ii) it maximizes the difference between the expected payoff

the decision-maker could achieve from the more accurate model and the expected

payoff he would obtain if he remained with the action he planned to take given

his current model, with the expectation taken with respect to the new stochas-

tic mapping. We refer to this difference as the maximal regret from not acquir-

ing the more accurate model, and interpret it as the decision-maker’s maximal

willingness-to-pay for reducing his misspecification. Thus, when the cost of re-

ducing the misspecification exceeds this maximal willingness-to-pay, the decision-

maker can be said to be rationally misspecified.

3



Our approach is motivated by the economic literature on decision-making with-

out priors (in particular, Bergemann and Schlag (2008) and Bergemann and

Schlag (2011)) and by the phenomenon of “fear of missing out” or FOMO (see,

e.g., Milyavskaya et al. (2018) and Laurence and Temple (2023)). The idea is that

when a decision-maker is presented with the opportunity to acquire new knowl-

edge that could make him better off, he considers what he might be giving up if

he forgoes that opportunity. Specifically, the new knowledge might prompt him to

take a different action and obtain a significantly higher payoff; it might also make

him realize that the action he was planning to take without the new knowledge

would result in a low payoff. The greater the difference between these two poten-

tial payoffs, the more valuable the new knowledge becomes. The worst-case, in

terms of what the decision-maker would lose by not acquiring the new knowledge,

is represented by the maximal value this difference in payoffs can take.

When assessing his potential regret, the decision-maker does not consider the

entire set of (stochastic) mappings from actions to consequences. Instead, he fo-

cuses only on those mappings that are consistent with the partial information he

already possesses. To illustrate this, consider the example of Alice and Bob pre-

sented above. Suppose that, at the outset, Bob knows that the steady-state distri-

bution of Alice’s actions is uniform when her type lies in the interval [0,1]. Now,

suppose Bob is contemplating learning the conditional distributions of Alice’s ac-

tions when her type lies in the interval [0,0.5] and when it lies in the interval

[0.5,1]. In this case, when calculating his maximal regret, Bob considers only

those conditional distributions that are consistent with the overall distribution of

Alice’s actions remaining uniform on [0,1].

As a different example, consider a decision-maker who only knows the cor-

relation between two pairs of variables, (x, y) and (y, z). If this decision-maker

can learn the true joint distribution over all three variables, consistency requires

that this distribution must align with the pairwise correlations he already knows.

Thus, a decision-maker’s maximal regret from not reducing his misspecification

is constrained by this consistency requirement.

Our upper bound on the decision-maker’s willingness-to-pay for information

is “conservative/permissive” in the sense that it is computed with respect to all

the possible mappings from actions to consequences (“models”) that are relevant

for the new data and are consistent with his current knowledge. We impose only

minimal assumptions on how the decision maker aggregates the regret associated

with not adopting each of the possible models. Thus, various ways to aggregate

4



the regret may lead to different levels of actual willingness-to-pay, but none will

exceed our upper bound. Hence, if the cost of obtaining new information exceeds

this bound, we can be certain that the decision-maker will not be willing to incur

it, no matter how he aggregates the potential regret associated with not adopting
each of the possible models. Despite this conservative approach, we will show that

in some environments, the upper bound may in fact be zero.

We demonstrate the framework’s portability by applying it to a range of belief

misspecification models: coarse expectations (as captured by Jehiel (2005) notion

of Analogy-Based-Expectations-Equilibrium or ABEE), causal misperceptions (as

captured by Spiegler (2016)’s Bayesian networks framework) and sampling (as

captured by Osborne and Rubinstein (1998)’s notion of Sk equilibrium). We pro-

vide a detailed explanation of each model in the corresponding section below.

The remainder of the paper is organized as follows. Related literature is dis-

cussed immediately below. Section 1 formally introduces our approach. The next

three sections analyze the three applications of our approach: coarse expectations

in Section 2, causal misperceptions in Section 3 and sampling in Section 4.

Related literature. A number of alternative approaches have been proposed

to endogenize decision-makers’ misspecified beliefs. Gonçalves (2023) considers

normal form games where each player is endowed with some exogenous prior over

the other players’ mixed strategies and decides sequentially whether to sample

costly signals about these strategies. Heller and Winter (2020) study misspecified

beliefs that constitute a fixed point: players best respond to their misspecified

beliefs and these misspecified beliefs are best responses to each other. He and

Libgober (2023) propose an evolutionary approach to define a notion of “stable

misspecifications”. In the context of ABEE, Jehiel and Weber (2024) endogenize

the composition of analogy partitions, by requiring them to satisfy a property that

can be interpreted as minimizing prediction errors. Finally, there is a literature

that takes a learning approach to justifying persistent misspecification. Notable

examples include Cho and Kasa (2015) and more recently, Ba (2024).

A different approach to endogenizing misspecified beliefs is to consider an in-

terested third party that strategically provides a decision-maker with a (possibly

misspecified) model of the steady-state in order to persuade him to choose a par-

ticular action. Some recent examples include Eliaz and Spiegler (2020); Eliaz

et al. (2021c,a,b); Schwartzstein and Sunderam (2021) and Aina (2024).

The problem of evaluating the impact of new information in the absence of ob-
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jective priors naturally comes up in decision-making under ambiguity. Li (2020)

assumes that the decision-maker uses the same model of ambiguity-aversion (e.g.,

max-min expected utility) to evaluate both his expected utility given the new in-

formation, and to assess his uncertainty about which information will realize.

This approach is then shown to sometimes generate negative value of informa-

tion.2 In contrast, models of belief-misspecifications, which are the focus of this

paper, do not provide guidance on how the decision-maker may evaluate infor-

mation that reduces his misspecification. Consequently, the approach proposed

by Li (2020) cannot be applied. This is where our framework, which bounds the

willingness to pay for information with maximal regret, proves useful.

1 Framework

We present the framework in four steps. First, we define the objective (or “true”)

environment in which the player operates. This environment is known to the

modeler but not to the player. Next, we introduce the concept of a misspecified

“type” and explain how a player’s type affects his decisions. We then define a

player’s regret from not adopting an alternative model. Based on this, we derive

an upper bound on the player’s willingness to pay for data that can lead him to

adopt a new model, which is unknown at the time of acquiring the data. Finally,

we say that a player rationally decides to remain misspecified if, among all models

consistent with his type, there is no model for which the player’s willingness to

pay exceeds the cost.

The objective environment. A player has to choose an action from a compact

set A. Each action is stochastically mapped to a consequence from a set Y via

a function g : A → ∆ (Y ).3 The stochastic nature of this mapping could be due

to an unknown state of nature, or because the consequence also depends on an

unknown action by another player. We refer to g as the true model of the environ-
ment. The player’s preferences are defined over A ×Y and are represented by a

bounded and continuous utility function u : A×Y →R.

Misspecified models. The player does not know g. Instead, he works according
2Kops and Pasichnichenko (2023) and Shishkin and Ortoleva (2023) experimentally study the

relationship between ambiguity-aversion and negative value of information, finding mixed evi-
dence.

3We assume that Y is a Polish space, and denote by ∆(Y ) the set of probability distributions
over Y endowed with the weak* topology. The function g is assumed to be both measurable and
continuous.
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to a (potentially) misspecified model, which we represent by his type. LetΘ denote

the set of types. Each type θ ∈ Θ possesses a subjective model gθ : A → ∆(Y )

from actions to consequences which guides his choice of actions.4 A model gθ is

considered misspecified if it differs from g. We assume that θ encapsulates all

relevant information the player has about the environment. Thus, the optimal

action for a player of type θ, denoted by aθ, is given by:5

aθ = argmax
a∈A

∫
y∈Y

u (a, y)dgθ(y | a) (1)

where gθ(· | a) is the probability measure over consequences generated by gθ (a).

For example, consider a player of type θ who only knows, for each of his actions,

the feasible outcomes, and a single observation of an outcome from a previous

instance when the action was taken. A possible specification of gθ is that each

action leads with certainty to the outcome that was observed for that action.

Regret from not adopting a new model. Consider a player of type θ who

possesses a subjective model gθ that guides his choice of actions. Suppose this

player encounters an alternative model g̃ : A → ∆(Y ). The player is uncertain

whether g̃ is the correct model, yet recognizes that ignoring it could result in

regret.

We define regret as the difference between the expected payoff from the optimal

action under the new model g̃, and the expected payoff from the original optimal

action aθ, with expectations about the relationship between actions and conse-

quences evaluated according to g̃. Formally, the regret experienced by a player of

type θ from continuing to operate under gθ instead of adopting g̃ is given by:6

Rθ( g̃)=max
a∈A

∫
y∈Y

u (a, y)d g̃ (y | a)−
∫

y∈Y
u (aθ, y)d g̃ (y | aθ) . (Regret)

where g̃(· | a) is the probability measure over consequences in Y that is generated

by g̃ (a).

This approach to quantifying the player’s regret is inspired by the common

phenomenon of FOMO. That is, a player is concerned that if he were to pass on

4We assume that the function gθ is both measurable and continuous.
5Existence of a maximum in Eq. (1) follows from the compactness of A and the continuity of

u and gθ. For simplicity, we assume that this maximizer is unique. In Section 3 we relax this
assumption.

6When there is more than one optimal action according to gθ, the regret may also depend on
which of these actions is chosen. We demonstrate this in Section 3.
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the opportunity to act according to a new model, he would not only miss out the

chance to earn a significantly high payoff, but also could realize that his current

action is truly suboptimal.

Rational misspecification. Suppose a player of type θ is offered the opportunity

to pay a cost c to obtain data about the environment that would lead him to revise

his model. We represent such data by a set of potential new models Gθ that are

all consistent with the information encoded in the player’s type θ. The notion

of consistency is context dependent and will be defined precisely for each of the

applications in the subsequent sections. For now, we keep the definition abstract

and illustrate it with the following example.

Consider the player with type θ described above. Suppose θ is offered access

to new data that provides an additional observation of a past outcome for each

action. This new data may lead type θ to adopt a new model. Crucially, the

set of possible new models, namely Gθ, includes only those consistent with the

original information that type θ has. Specifically, for each action, models in Gθ

must assign a positive probability to the outcome that was originally observed.

Before acquiring the data, the decision maker does not know what his revised

model will be. We assume that his willingness to pay for the data is determined

by the regret he would experience from not adopting any of the models in Gθ.

However, the precise way in which he aggregates these regret levels to form his

valuation is unknown to the modeler. We impose only a weak assumption: The

overall level of regret from not acquiring data that could lead to a model in Gθ

cannot exceed the regret associated with not adopting any single model in Gθ.7,8

Hence, from the modeler’s perspective, an upper bound on the decision maker’s

7One family of aggregation rules consistent with this assumption is the following. Suppose
that, given a set of consistent models Gθ, the decision maker aggregates the regret of not adopting
any of them using a function ρ

(
{Rθ( g̃)} g̃∈Gθ

)
, where Rθ( g̃) denotes the regret from not adopting

model g̃, as defined in (Regret). Assume that ρ is monotone – that is, (weakly) increasing in each
argument Rθ( g̃) – and satisfies the condition that if Rθ( g̃) = r for all g̃ ∈ Gθ and some constant
r > 0, then ρ(Gθ)= r. Although the analyst does not observe the function ρ, she can conclude that
ρ(Gθ)≤ sup g̃∈Gθ

Rθ( g̃).
8Our regret-based approach is rooted in the idea that the decision-maker is triggered to think

about the models in Gθ only when confronted with the opportunity to acquire knowledge. We do
not make any assumption on whether such opportunity may also trigger the decision-maker to
change the action he planned on choosing absent any information in order to minimize his antic-
ipated regret. Since this may only reduce his actual willingness-to-pay, he would still reject the
offer if the cost is above our upper bound. In this sense, our upper bound may be “too permissive”.
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regret from not adopting any model in Gθ is given by:

R∗ (Gθ)= sup
g̃∈Gθ

Rθ( g̃). (WTP)

We interpret R∗ (Gθ) as an upper bound on what a player will pay for the data

given by Gθ. To streamline the exposition, we will henceforth simply refer to

R∗ (Gθ) as the player’s willingness-to-pay (WTP) for Gθ. Thus, if c > R∗
θ

the player

would pass on the opportunity to acquire the data and learn about a new model

from actions to consequences. In this case, we say that the player is rationally
misspecified.

Remark. Generally speaking, a player’s type encodes many things: the informa-

tion the agent possesses, how he completes missing information, his belief about

how outcomes are determined, etc. However, only two components of a type are

payoff relevant: (i) the mapping from actions to consequences, that is captured by

gθ, and (ii) the set of mappings from actions to consequences that the player con-

siders possible when learning new information, which is captured by Gθ. There-

fore, when defining types in the applications below we will focus on defining these

two items, with the understanding that the full description of the type may po-

tentially include other (non-payoff relevant) details as well.

In the following sections, we apply this framework to three forms of misspecifi-

cations that have been analyzed in the literature: coarse expectations, sampling,

and causal misperceptions. For each case, we explain how it maps to the primi-

tives defined in this section.

2 Coarse expectations

We apply our framework to misspecifications arising from coarse beliefs about the

mapping from actions to consequences, based on coarse data on the equilibrium

joint distribution over the action profile and states of nature. For instance, a

player may only have access to the marginal distribution over another player’s

action and the marginal distribution over states, without data about the joint

distribution. In this case, the player extrapolates and fills in the missing data to

form a subjective belief about the joint distribution over actions and states.

The literature offers several approaches to how a player extrapolates from his

coarse data. We adopt the Analogy Based Expectations Equilibrium (ABEE) ap-
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proach originally proposed in Jehiel (2005) and later extended to Bayesian games

in Jehiel and Koessler (2008). Rather than presenting this framework in its full

generality, we apply it to a classic adverse selection setting. This setting was an-

alyzed under various approaches to coarse expectations: “cursed equilibrium” in

Eyster and Rabin (2005), “behavioral equilibrium” in Esponda (2008) and ABEE

in Jehiel and Koessler (2008) and Spiegler (2011).

The setting. A seller owns an object with a privately observed quality φ, which

is distributed according to a distribution F supported on [0,1] with density f . We

assume that F is such that φ+F
(
φ

)
/ f

(
φ

)
is increasing in φ, which means the

seller’s “virtual value” is increasing in his type.

Trade occurs through a double auction protocol: The seller submits an ask

price x ∈ [0,1] and the buyer submits a bid price p ∈ [0,1]. A trade takes place at

price p if p ≥ x. The value of the object for the buyer is v
(
φ,b

)
, where v (·, ·) is

increasing in both parameters, and v
(
φ,b

)≥φ for all φ ∈ [0,1], ensuring there are

always gains from trade. The parameter b ∈ R+ captures the gains from trade.

The seller’s payoff is 0 if there is no trade, and p−φ otherwise. The buyer’s payoff

is 0 if there is no trade, and v
(
φ,b

)− p, otherwise.

For expositional purposes, it is convenient to have a stark rational expecta-

tions benchmark in which the the market collapses due to adverse selection. We

therefore make the following assumption:9

Eφ∼F
[
v
(
φ,b

) |φ< p
]< p ∀p ∈ (0,1]. (2)

In words, Eq. (2) states that, for any price p, the buyer’s expected value from

trading with a seller who agrees to sell at price p is less than p.

For a seller with quality φ, submitting an ask price x =φ is a dominant strat-

egy. Thus, in what follows, we focus on the buyer’s problem.

ABEE. We follow Spiegler (2011) in describing the notion of ABEE in the present

context. Let σ : [0,1] →∆([0,1]) be a seller’s strategy that maps each quality to a

distribution over prices. As noted above, given the trading rule, the seller will use

the deterministic mapping σ∗ which equates the ask to the quality. A buyer with

rational expectations would choose a bid that maximizes his expected payoff given

a perfect perception of σ∗. In contrast, a misspecified buyer will maximize his

expected payoff with respect to a coarse representation of σ∗. This representation

9For a simple example that satisfies this condition, see Example 1 below.
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takes the following form. The buyer is endowed with an analogy partition C =
(C1, . . . ,CK ) of [0,1], where each cell Ck is an interval. Let C(φ) denote the cell

containing the seller’s quality φ. The buyer’s coarse representation of σ∗ is a

mixed strategy σC such that for every seller quality φ, the strategy σC mimics

the price distribution in the entire cell C(φ) in the sense that for all x ∈ [0,1]:10

Pr[σC (φ)≤ x]=Pr[σ∗(t)≤ x | t ∈ C(φ)]

Next, we situate the above setting within the framework presented in Section

1. Readers who are not interested in the precise details of this mapping may skip

ahead to Section 2.1 without loss of continuity.

Mapping the setting to our framework. To cast the setting within our frame-

work, we proceed in two steps. First, we describe how a misspecified buyer com-

putes the distribution over the possible consequences of submitting a bid (i.e. a

model g : A →∆(Y )). This computation is performed given that the buyer is mis-

specified in the ABEE sense and has certain beliefs about the marginal distribu-

tions over the set of seller’s qualities and the marginal distribution of asks based

on his analogy partition. Next, we explain how these marginal distributions are

determined for the misspecified buyer, both when he possesses the initial analogy

partition and when he considers which models are consistent with new data he

might acquire.

Fix an analogy partition C = (C1, . . . ,CK ) of [0,1]. Suppose the buyer believes

that the marginal distribution over seller’s quality is given by Hφ, which admits

density hφ. The buyer also believes that the marginal distribution over asks,

conditional on the seller’s quality being in the cell Ck, is given by Hk
x . These

marginals can come either from the buyer’s initial misspecified model, or these

could be what he “imagines” the marginals would be when he is offered the op-

portunity to refine his original partition to C .

For example, suppose the seller’s quality is uniformly distributed over [0,1]

and he plays his dominant strategy. If the buyer is initially fully coarse,

i.e. his analogy partition C = (C1 = [0,1]) has a single cell, then Hφ = H1
x =

10As Spiegler (2011) explains, a possible interpretation of this notion of misspecification is the
following: “when the buyer enters the market, he has access to records of all the ask prices that
were previously submitted by the seller (or his previous incarnations), but he does not have acess
to the records of the valuations that lay behind these ask prices. Following the “Occam’s razor”
principle, the buyer adopts the simplest theory that is consistent with the historical records, where
simplicity here means that the theory is not allowed to depend on unobserveable variables as long
as it is consistent with the data.”
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U[0,1]. Alternatively, if the buyer initially has the analogy partition C =
(C1 = [0,1/2],C2 = [1/2,1]), then Hφ =U[0,1], H1

x =U[0,1/2] and H2
x =U[1/2,1].

Trade occurs at the bid price, whenever it is higher than the ask. Thus, each

bid price p induces a probability distribution over the set of consequences Y =
{∅}∪ [0,1], where the outcome {∅} is interpreted as “no-trade” and any outcome

φ ∈ [0,1] is interpreted as trade with a seller of quality φ. Therefore, for any bid

price p, the buyer computes the (ex-ante) probability for no trade as follows:

Pr({∅} | p)=
K∑

k=1
Pr

(
φ ∈ Ck

)
Pr

(
x > p|φ ∈ Ck

)= K∑
k=1

(
Hφ(Ck)−Hφ(Ck)

)
·
(
1−Hk

x (p)
)
,

(3)
where Ck and Ck denote the upper and lower boundaries of the cell Ck, respec-

tively. For each k in the sum on the right-hand side of Eq. (3), the first multiplier

is the probability that the seller’s quality φ is in the cell Ck, and the second mul-

tiplier is the probability that the ask is greater than the bid, conditional on the

seller’s quality being in the cell Ck.

For each bid price p, the buyer can also compute the probability of trade with

any set of qualities Φ ⊆ [0,1]. Under ABEE, his misspecification leads him to

compute this probability using the marginals as follows:

Pr(trade with sellers in Φ | p)=
K∑

k=1
Pr

(
φ ∈ Ck

) ·Pr
(
x < p | φ ∈ Ck

) ·Pr
(
φ ∈Φ | φ ∈ Ck

)
=

K∑
k=1

(
Hk

x (p) ·
∫
φ∈Φ∩Ck

hφ(z)dz
)
. (4)

For each k in the sum on the right-hand side of the first line of Eq. (4), the first

multiplier denotes the probability that the seller’s quality φ lies in cell Ck; the

second multiplier is the probability that the ask is below the bid–so that trade

occurs–conditional on the seller’s quality being in Ck; and the third multiplier is

the probability that the seller’s quality lies in the setΦ, conditional on being in Ck.

Note that the player’s misspecification is reflected in his use of Pr(φ ∈Φ | φ ∈ Ck)

instead of Pr(φ ∈ Φ | φ ∈ Ck , x < p), as he fails to account for the dependence

between the seller’s ask price and quality.

A buyer’s type is a partition of the interval [0,1], and represents the buyer’s

analogy partition at the outset, before potentially acquiring new data. For sim-

plicity, we restrict our attention to partitions with countably many elements. A

type θ = C θ = (Cθ
1, . . . ,Cθ

K ) correctly perceives the marginal distribution of the

seller’s quality, and the marginal distribution of the seller’s asks, conditional on
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the seller’s quality being within any of the cells. Consequently, the buyer’s type

θ determines the marginal distributions (Hθ
φ,Hθ,1

x , . . . ,Hθ,K
x ) in which the buyer

believes as follows:

Hθ
φ(φ)= F(φ) ∀φ ∈ [0,1] and (5)

Hθ,k
x (x)= F(x)−F(Cθ

k)

F(C
θ

k)−F(Cθ
k)

∀k ∈ {1, . . . ,K} and ∀x ∈ Cθ
k. (6)

Thus, the misspecified model gθ of type θ is determined by Eqs. (3) and (4), which

are computed based on the marginal distributions in Eqs. (5) and (6).11

Now, suppose the buyer is offered the opportunity to get access to a new par-

tition C = (C1, ...,CM), which is a refinement of C . The set of mappings that are

feasible for θ (the set Gθ) includes all the mappings that are induced according to

the marginals (Hφ,H1
x , . . . ,HM

x ), which satisfy the following:

Hφ(φ)= Hθ
φ(φ) ∀φ ∈ [0,1] and (7)

Hθ,k
x (x)= ∑

ℓ:Cℓ⊆Cθ
k

(
F(Cℓ)−F(Cℓ)

)
Hℓ

x(x) ∀k ∈ {1, . . . ,K} and ∀x ∈ Cθ
k. (8)

In words, Eq. (7) states that the marginal over the seller’s quality is consistent

with what the buyer’s knowledge prior to obtaining the new partition. Equation

(8) guarantees that for a cell that was refined, the new marginals over asks aggre-

gate to the coarser marginal that the buyer started with. Note these constraints

still leave the buyer with substantial freedom in imagining what the marginal

over the asks may be in the new (refined) partition. In Section 2.2 we illustrate

how to operationalize these constraints.

2.1 Two polar benchmarks

To illustrate the impact of the buyer’s misspecification we begin by comparing the

case of a correctly specified buyer with the case of a fully coarse one.

Rational expectations. Under rational expectations, the buyer has correct be-

liefs about the joint distribution of the object’s quality and the seller’s ask (i.e.,

he knows they are perfectly correlated, because it is a dominant strategy for the

11Our analysis depends on the information encoded in the buyer’s type θ, i.e. the marginals on
the quality and on the asks as specified by Eqs. (5) and (6). In principle, these could be generated
by a different market setting than the double auction we described above. That is, our analysis
would continue to hold for any joint distribution as long as it induces these marginals.
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seller to submit an ask that is equal to the quality). Hence, the buyer’s problem

is given by:

max
p

F (p) · (Eφ∼F
[
v
(
φ,b

) | φ< p
]− p

)
.

By our assumption in Eq. (2), the optimal solution is obtained at p = 0. Thus,

there is no trade in equilibrium.

Full coarseness. Next, consider a buyer whose analogy partition consists of a

single cell, i.e., θ = (
Cθ

1 = [0,1]
)
. This buyer only knows the marginal distribution

over the seller’s quality and the overall marginal distribution over the seller’s ask.

We refer to this buyer as being fully coarse. According to Eqs. (5) and (6), we have

Hθ
φ = Hθ,1

x = F.

The problem of a fully coarse buyer is given by: maxp F (p)·(Eφ∼F
[
v
(
φ,b

)]− p
)
.

The optimal price satisfies:

Eφ∼F
[
v
(
φ,b

)]= p+ F (p)
f (p)

. (9)

There exists a unique price that solves this equation. Denote this solution by p0.

2.2 The willingness to pay of a fully coarse buyer

Suppose that a fully coarse buyer has the opportunity to refine his data by paying

a fee to add a cell to his partition. Specifically, the buyer can acquire the analogy

partition (C1 = [0, t] ,C2 = [t,1]) for some t ∈ (0,1). This refinement allows the

buyer to learn the marginal distribution of asks when the seller’s quality is in

[0, t], denoted H1
x , and the marginal over seller’s ask when the quality is in [t,1],

denoted H2
x .

Before obtaining the new data, the buyer does not know what the marginal

distributions H1
x and H2

x might be. However, since these distributions must be

consistent with the data he already possesses (Eqs. (6) and (8)), he knows that:

F(t) ·H1
x(x)+ (1−F(t)) ·H2

x(x)= F(x) ∀x (10)

Denote by W(p,H1
x ,H2

x) the buyer’s (misspecified) expected payoff from a bid p
when the marginals over the seller’s ask are given by H1

x and H2
x . We can then
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compute this expected payoff as follows (see Eqs. (4)-(7) above):

W(p,H1
x ,H2

x)=Pr(trade with sellers in C1 | bid price is p) ·Eφ∼Hφ

[
v(φ,b)− p | φ ∈ C1

]
+Pr(trade with sellers in C2 | bid price is p) ·Eφ∼Hφ

[
v(φ,b)− p | φ ∈ C2

]
= F(t) ·H1

x(p) · (V1 − p)+ (1−F(t)) ·H2
x(p) · (V2 − p), (11)

where Vk ≡ Eφ∼F (v(φ,b) |φ ∈ Ck) denotes the expected value of v
(
φ,b

)
, conditional

on the seller’s quality being in Ck. Note that the buyer’s misspecification is re-

flected in his use of the expected values V1 and V2, which do not condition on

the event that trade occurs. Thus, the buyer fails to account for the dependence

between the object’s quality and the seller’s ask.

The buyer’s WTP is determined by solving the following maximization problem:

max
H1

x ,H2
x

{(
max

p
W(p,H1

x ,H2
x)

)
−W(p0,H1

x ,H2
x)

}
(OBJ)

s.t. F(t) ·H1
x(x)+ (1−F(t)) ·H2

x(x)= F(x) ∀x

The first component in the objective function, W(p,H1
x ,H2

x), represents the ex-

pected payoff the buyer can achieve with the new data, where the maximum

reflects the optimal price choice based on this refined information. The second

component, W(p0,H1
x ,H2

x), captures the expected payoff for the buyer from adher-

ing to the original bid, with the expectation evaluated using the refined data. The

constraint follows from Eq. (10) above.

Our first result characterizes the marginals, H1
x and H2

x , and the new bid p1

that solve the problem presented in hat (OBJ).

Proposition 1. Let p1 be the price that solves the buyer’s WTP, as determined by
(OBJ). Then exactly one of the following statements holds:

i. The price p1 satisfies V1 = p1 +F(p1)/ f (p1), provided that F(p0)−F(p1) ≤
F(t). Otherwise, it satisfies F(p0)−F(p1)= F(t).

ii. The price p1 satisfies V2 = p1 +F(p1)/ f (p1), provided that F(p1)−F(p0) ≤
1−F(t). Otherwise, it satisfies F(p1)−F(p0)= 1−F(t).

Furthermore, the marginal distributions H1
x and H2

x that solve the buyer’s WTP,
as determined by (OBJ), satisfy the following condition: If the price p1 is deter-
mined by (i) above, then H2

x(p1) = H2
x(p0); if the price p1 is determined by (ii)

above, then H1
x(p1)= H1

x(p0).
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Figure 1: a joint probability distribution H over the space [0,1]× [0,1] of seller asks and
qualities, partitioned into six regions under the assumption p1 > p0.

To interpret the conditions in Proposition 1, recall that a buyer faces two po-

tential sources of regret from not refining his data. First, the new data might

have enabled the buyer to place a more precise bid, potentially securing better

quality. Second, the new data might have revealed that his original bid was too

high relative to the actual quality. Proposition 1 states that the buyer experiences

maximal regret when he focuses exclusively on one of these sources and envisions

the worst-case scenario (in terms of regret) associated with that particular source.

To gain intuition for this result, note that the new price p1 can be either above

or below the original price p0. If p1 > p0, then p1 will lead to trade with higher-

quality sellers compared to p0 if sellers who submit asks between the p0 and p1

are more likely to belong to the upper cell of the partition, i.e. [t,1]. Consequently,

by not refining his data, the buyer would miss an opportunity to trade with “good”

sellers and secure a higher payoff. Indeed, H1
x(p1) = H1

x(p0) indicates that the

regret-maximizing distribution assigns zero probability to the event that a seller

with an object of quality in the interval [0, t] submits an ask between p0 and p1.

In other words, increasing the bid attracts only high-quality sellers.

On the other hand, if p1 < p0, then the original price p0 was too high relative

to the quality purchased. The loss from maintaining this price is accentuated if

sellers who are willing to trade at p0, but not at p1, are more likely to belong to

the lower cell of the partition, i.e. [0, t]. Indeed, H2
x(p1)= H2

x(p0) implies that the

regret-maximizing distribution assigns zero probability to the event that a seller

with an object of quality in the interval [t,1] submits an ask between p1 and p0.

The main idea behind the proof is to identify a joint distribution H over asks

(x) and qualities (φ) that solves (OBJ). To provide a rough outline of the proof, we

16



focus on the case where the price p in the maximization problem is restricted to

be greater than p0. In this case, the space [0,1]×[0,1] of asks and qualities – over

which the joint distribution H is defined – can be partitioned into six regions, as

illustrated in Figure 1.

With this partition of the space, we can express the objective function in (OBJ)

in terms of the probability mass that the distribution H assigns to the regions

M1 and M2. The constraints on the marginal distributions pin down the total

probability masses along each row and column of regions in Figure 1. This struc-

ture allows us to establish that, since V2 >V1, the distribution H that maximizes

the buyer’s WTP allocates as much probability as possible to the region M2, ef-

fectively shifting probability mass away from the region M1. As a result, the

objective function simplifies significantly, and the solution follows directly from

maximizing it.

The following example demonstrates how Proposition 1 can be operationalized:

Example 1: Suppose the seller’s quality φ is uniformly distributed on the in-

terval [0,1], i.e., F(φ) = φ. Additionally, assume that the v(φ,b) = φb for some

b ∈ (1,2). Solving Eq. (9) shows that a coarse buyer sets the price p0 = b/4. Now,

suppose the buyer has the opportunity to refine his data according to the partition([
0, 1

2

]
,
[1

2 ,1
])

. What is the buyer’s WTP for this refined data?

Computation shows that V1 = b/4 and V2 = 3b/4. By Proposition 1, the bid p1

that solves the problem presented in (OBJ) satisfies either V2 = 2p1 or V1 = 2p1.

To determine the buyer’s WTP for the refined data, we compare the two cases.

If V2 = 2p1, then p1 = 3b/8. Indeed, since F (3b/8)−F (b/4)= b/8< 1
2 = 1−F

(1
2

)
,

the price p1 = 3b/8 is a candidate for maximizing the buyer’s regret. From the

proof of Proposition 1, we know that the buyer’s regret from not acquiring the

new data in this case is given by F(p1)(V2 − p1)−F(p0)(V2 − p0), which simplifies

to b2/64.

If V1 = 2p1, then p1 = b/8. Similarly, since F (b/4)−F (b/8)= b/8< 1
2 = 1−F

(1
2

)
,

it follows that p1 = b/8 is also a candidate for maximizing the buyer’s regret. A

similar computation shows that, in this case as well, the buyer’s regret from not

acquiring the refined data is b2/64. Notably, the equality of regret in both cases is

a consequence of this specific setup and does not hold in general.

Thus, the buyer’s WTP for refining his data and obtaining a new partition is

b2/64. □
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Proposition 1 assumed that the refined partition available to the buyer was

given. A natural question that arises is: which two-cell partition maximizes the

buyer’s WTP for data?

To address this question, we introduce the following notation. Given an anal-

ogy partition ([0, t] , [t,1]) defined by a cutoff t, let p∗
1(t) denote the price that solves

the buyer’s WTP to learn this analogy partition, as characterized in Proposition

1. We then have that:

Proposition 2. The cutoff t∗ that generates the partition ([0, t∗] , [t∗,1]) for which
the buyer’s WTP is maximal satisfies

i. F(p0)−F(p∗
1(t∗))= F(t∗) if p0 > p∗

1 , and

ii. F(p∗
1(t∗))−F(p0)= 1−F(t∗) if p0 ≤ p∗

1 otherwise.

In terms of the explanation provided after Proposition 1, Proposition 2 implies

that when p∗
1 > p0, the regret-maximizing distribution H assigns zero probability

mass to regions M1,T2, and B2 in Figure 1. This suggests that the buyer perceives

the following: if he maintains the original bid p0, he will only receive quality

below t, whereas raising his bid to p∗
1 will allow him to trade with sellers offering

quality above t. An analogous intuition applies for the case that p∗
1 < p0.

Thus, if the cost c of refining data and acquiring a new partition exceeds the

buyer’s WTP for the partition characterized in Proposition 2, the buyer will opt to

retain his coarsest partition. That is, he will choose to remain rationally misspec-
ified. The next example illustrates this phenomenon in a simple setting. A note-

worthy feature of this example is that even though the environment is symmetric,

the partition associated with the highest WTP is highly skewed: the threshold t∗

characterizing it lies above 2
3 .

Example 2. Consider the specification in Example 1. Under these parameters,

the partition that maximizes the buyer’s WTP, as characterized by Proposition

2, splits the interval [0,1] at t∗ = 4/(4+ b).12. For brevity, we focus on the first

partition in this example. Given the range of b, it follows that t∗ > 2
3 .

To see how this conclusion is derived, consider the case where the solution

satisfies (ii) in Proposition 1. From the proof of Proposition 1, the buyer’s WTP

is given by F(p1)(V2 − p1)− F(p0)(V2 − p0). Recall that, under the parameters

of this example, p0 = b/4. Additionally, since V2 = (1+ t)b/2 = 2p1, it follows that

12An alternative partition with a threshold at t∗ = b/(b+4) yields the same WTP, in which case
t∗ < 1

3
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p1 = (1+t)b/4. Applying Proposition 2, the threshold t∗ that maximizes the buyer’s

WTP satisfies
1
4

(1+ t∗)b− b
4
= 1− t∗

which implies to t∗ = 4/(4+ b). The corresponding buyer’s WTP is b2/(b + 4)2.

Indeed, since b < 2, this value exceeds b2/64, which was the buyer’s WTP for the

partition ([0, 1
2 ], [1

2 ,1]), as established in Example 1. The arguments for the case

where the solution corresponds to case (i) in Proposition 1 are analogous.

Therefore, with the parameters of Example 1, if the cost c of acquiring the

refined data exceeds b2/(b+4)2, the buyer will always prefer to remain fully coarse.

□

Extending the analysis to a buyer with an analogy partition containing n cells

who considers paying for a refinement of that partition is not conceptually differ-

ent but requires a more involved computation: there would be more ways to shift

the admissible joint distribution in order to increase regret (a figure analogous to

Figure 1 would have more regions to consider). However, the same type of reason-

ing would apply: regret would be maximized by either making it more likely that

the new price attracts higher-quality sellers, or that the original price attracted

very low-quality sellers.

3 Causal misperceptions

In this section we apply our approach to misspecifications that stem from causal

misperceptions, where individuals misinterpret spurious correlations between

variables as causal relations. To model such misperceptions, we adopt the frame-

work introduced by Spiegler (2016), which employs tools from from the Bayesian

networks literature to represent individuals’ subjective causal perceptions using

directed acyclic graphs (DAGs).

We consider agents who hold a misspecified causal model but have the option to

pay a cost to learn the true model. Using our approach, we derive the agents’ will-

ingness to pay for acquiring this knowledge. We then use this setting to illustrate

that in a market for information, misspecified agents – who stand to benefit the

most from learning the true model – may be excluded from access to information.

The setting. We demonstrate our approach in the context of the “dieter’s

dilemma” analyzed in Spiegler (2016). This is a convenient setting for introduc-
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ing the Bayesian network framework of causal misperceptions (for the general

framework, see Spiegler (2016) and Spiegler (2020)). There is a unit measure of

agents, who each needs to decide whether to take a dietary supplement. We let

a = 1 denote the action of taking the supplement and a = 0 the action of not taking

it. An agent cares about his health h, which is either good (h = 1) or bad (h = 0).

His health h and supplement consumption a are potentially correlated with the

level of some chemical c in his blood, which can be either normal (c = 0) or not

(c = 1). An agent’s payoff is equal to h−ka, where k is some positive constant.

The relations between these three variables are governed by a data gener-

ating process, which can be represented by a long-run joint distribution p over

(a, c,h).13 Let p(a) and p(h) denote the marginal distributions over the action

and health outcome. Let p(c | a,h) be the conditional probability of c, given a and

h. The true objective joint distribution over (a, c,h) can be factorized as follows:

p(a, c,h)= p(a)p(h)p(c | a,h) (12)

where p(a) is determined endogenously by the agents’ behavior according to the

equilibrium notion defined below.

We assume that the true distribution p satisfies the following two properties,

for all a,h ∈ {0,1},. First,

p(h | a)= p(h)= 1
2

.

Namely, in reality, an agent’s health state is independent of supplementation.

Second,

p(c = 1 | a,h)= (1−a)(1−h).

That is, the agent’s blood chemical level is abnormal if and only if he is unhealthy

and have not consumed the supplement. Thus, given p, the rational decision is to

not consume the supplement, i.e. choose a = 0.

The factorization presented in Eq. (12) can be depicted by a DAG, where each

node corresponds to a variable, and a direct link from one variable to another

indicates a causal relation – that is, the former causes the latter. Thus, the DAG

Γ associated with p is

13One can think of this steady-state distribution as a giant excel sheet with infinite rows and
three columns, one for each variable. Each entry in this sheet is a particular realization of the
three variables, and the empirical frequencies are interpreted as the long-run probabilities.
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a c h (DAG Γ)

We refer to (DAG Γ) as the true DAG and to p as the true data generating

process. Thus, according to p, the action a does not affect h, which is determined

exogenously by nature. In addition, the chemical level c is merely a symptom,

jointly influenced by the action a and the person’s health h.

Remark. Given some DAG Γ′, any joint distribution p′ on (a, c,h) that is consistent

with Γ′ can be factorized as follows:

p′(a, c,h)= p′(a)p′(c |Γ′(c))p′(h |Γ′(h))

where Γ′(c) and Γ′(h) are the variables that cause c and h, respectively (i.e., those

variables with a link going into c and into h). If one of these variables, say x ∈
{c,h}, is exogenous (i.e., no links go into x), then Γ(x)=; and p′(x |Γ′(x))= p′(x).

Suppose the agents have a misspecified belief about the data generating pro-

cess. Specifically, they believe that the joint distribution over (a, c,h) is consistent

with the DAG Γ′ given by:

a c h (DAG Γ′)

Namely, the agents falsely believe that supplementation causes the health out-

come via its effect on the chemical level. Thus, they believe that the joint distri-

bution p′ that is consistent with (DAG Γ′) is factorized as follows:

p′(a, c,h)= p(a)p(c | a)p(h | c). (13)

Suppose that, when deciding which action to take, agents do not have access to

the true conditional probability p(h | a). Instead, they must derive this quantity

using their subjective model. That is, agents only have access to the probabilities

in their factorization formula (13), namely: p(a), p(c | a) and p(h | c). Using these,

they compute their subjective belief about the probability of being healthy given

an action, denoted by p′(h = 1 | a), as follows:

p′(h = 1 | a)= p(c = 0 | a)p(h = 1 | c = 0)+ p(c = 1 | a)p(h = 1 | c = 1).
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Note that the misspecification lies in that the agent incorrectly uses p(h = 1 | c = 0)

(which is an expectation over all values of a) instead of p(h = 1 | c = 0,a). Given

our assumptions on p, these calculation yields:

p′(h = 1 | a)= 1
(2−a) (1+α)

where α is the (endogenous) steady-state probability of choosing a = 1 (or equiva-

lently, the steady-state proportion of agents who choose a = 1).

Mapping the setting to our framework. To describe this setting in the lan-

guage of our framework, let A = {0,1} and Y = {0,1} (where consequences corre-

spond to health status, i.e. y= h). The true mapping from actions to consequences

g(a) follows a uniform distribution over Y , for all a ∈ A. Consequently, the optimal

action under rational expectations is a = 0.

The set of types Θ consists of all possible DAGs over the variables (a, c, y) such

that a is an ancestral node. For a type θ = Γ′, the agents’ misspecified mapping

gθ is given by:

gθ(a) [1]=
{

1
2(1+α) i f a = 0

1
1+α i f a = 1.

Note that the steady-state frequency of taking the supplement affects the

agents’ misspecified belief about the supplement’s effect on health, which in turn

affects the steady-state frequency of taking the supplement. Such feedback effect

is common in models of misspecified beliefs.

Personal equilibrium. Because the agents’ strategy affects their mapping from

actions to consequences, their decisions are determined as a fixed point rather

than as a solution to a maximization problem. Spiegler (2016) refers to this fixed

point as a personal equilibrium. To present this definition, denote by E g̃u(a, y) the

expectation of u(a, y) with respect to some mapping g̃ : A →∆(Y ).

Definition. Given a (possibly misspecified) mapping g̃ : A → ∆(Y ), a probability
α ∈ (0,1) is an ε-personal equilibrium, if whenever α> ε (respectively, 1−α> ε)
then E g̃u(1, y)≥ E g̃u(0, y) (respectively, E g̃u(1, y)≤ E g̃u(0, y)). A probability α ∈ [0,1]

is a personal equilibrium if it is the limit of ε-personal equilibria as ε→ 0.

Equipped with this definition, the following can be shown:

Proposition 3. [Spiegler (2016)] Suppose the agents’ misspecified mapping is gθ.
If k ∈ (1

4 , 1
2 ) there is a personal equilibrium in which the proportion of agents who
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take the supplement is given by

α= 1−2k
2k

. (14)

The willingness to pay for the true model. Suppose the agents could obtain

access to the true probability p(h | a) for a price. What would be their willingness

to pay for this information in the above personal equilibrium?

According to our approach, the willingness to pay is given by the maximal ex-

pected regret from not obtaining the information. To determine this quantity, we

seek the joint distribution q over (a, c,h) that maximizes the difference between:

(i) the expected payoff from the action taken under q, and (ii) the expected pay-

off from the agent’s equilibrium action, where: (a) this expectation is computed

according to q, and (b) the joint distribution q must be consistent with the infor-

mation that the agents use under their misspecified model:

q(h)= 1
2

, q(c = 0 | a = 1)= 1 , q(c = 0 | a = 0)= 1
2

q(h = 1 | c = 1)= 0 , q(h = 1 | c = 0)= 2k.

These constraints leave only one degree of freedom in the specification of q.

Denoting β := q(a = 1, c = 0,h = 0), the values of q(a, c,h) are determined by β and

α (where α is given by Eq. (14)) as follows:

a = 0 a = 1

c = 0 c = 1 c = 0 c = 1

h = 0 α
2 −β 1−α

2 β 0

h = 1 1
2 −α+β 0 α−β 0

Table 1. the constrained joint distribution q

Denote by Q the set of probability distributions that are consistent with Table 1.

In contrast to the applications presented in Sections 2 and 4, here, the agent’s

regret depends not only on his type, but also on his equilibrium action. Let Ra(q)

denote the expected regret of agents who choose a and believe that q is the joint
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distribution over (a, c,h). Let:14

q∗
a ∈ argmax

q∈Q
Ra(q) and R∗

a = Ra(q∗
a).

Denote by β∗
a the value of β that corresponds to q∗

a. Our next result characterizes

these values:

Proposition 4. The regret-maximizing distribution q∗
a satisfies β∗

0 =max{0, 1−3k
2k }

and β∗
1 = 1−2k

4k .

To gain intuition for this result, consider agents who choose a = 0 in equilib-

rium. The joint distribution q that maximizes their regret assigns a high proba-

bility to the outcome h = 0 when a = 0, and a high probability to h = 1 when a = 1.

These objectives are achieved when β is minimized, subject to the constraint that

all the entries in Table 1 remain non-negative. It can be shown that the effective

constraint is 1
2−α+β≥ 0. This implies that the optimal value of β for agents choos-

ing a = 0 is given by β∗
0 = max{0,α− 1

2 }. Substituting for α, this result translates

directly into the first condition stated in Proposition 4.

A similar argument applies to agents who choose a = 1 in equilibrium. In this

case, the joint distribution q that maximizes regret assigns a high probability

to h = 1 when a = 0, while simultaneously assigning a high probability to h = 0

when a = 1. These objectives are attained when β is maximized, provided that

all the entries in Table 1 remain non-negative. The effective constraint in this

case is α/2−β≥ 0. Hence, β∗
1 =α/2. This result translates directly into the second

condition in Proposition 4.

Proposition 4 establishes a threshold price for learning the true causal model,

above which, all agents will “rationally” choose to remain misspecified. This price

is computed using the value of R∗
a , which is derived in the proof of Proposition 4.

The following corollary formally describes this threshold:

Corollary 1. No agent will pay to learn the true model if the price of learning
exceeds

2k2

1−2k i f 1
4 < k ≤ 1

3 ,
2k(1−2k)

4k−1 i f 1
3 < k ≤ 3

8 ,

k i f 3
8 < k < 1

2 .

Corollary 1 leads to the following observation. Suppose there are consultants

who can reveal the true causal model to the agents. However, the consultants

14Since β ∈ [0,1], this guarantees that a maximizer q∗
a exists.
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have limited capacity, meaning they can serve at most a fraction λ < 1−α of the

agents population. In this market for consultants, the equilibrium prices will be

determined by the WTP of the marginal agent, as defined above.

A key question arises: Will this market for consultants eliminate the misspeci-

fication and lead agents to stop consuming the supplement? The next observation

demonstrates that the answer is negative when the supplement’s cost falls below

a certain threshold.

Corollary 2. If k ∈ (1
4 , 3

8 ), then in the equilibrium of the market for consultants,
only the agents who choose the rational action (not taking the supplement) will pay
for consultants.

This result follows directly from the proof of Proposition 4 and Corollary 1. The

WTP of agents who take the supplement is equal to k, which is lower than the

WTP of agents who do not take the supplement when k < 3
8 . Consequently, there

exists a range of parameter values in which only agents who would not benefit
from learning the true model choose to acquire the information. Notably, when the

agents who originally chose the rational action pay to learn p(h | a), they simply

confirm their initial choice was correct. As a result, the distribution over actions

remains unchanged.

Our next result characterizes the causal models that are consistent with the

joint distributions that maximize the agents’ regret.

Proposition 5. (i) If k ≥ 1
3 , then q∗

0 is consistent with a causal model represented
by the DAG

a ch

(ii) if k < 1
3 , then q∗

0 is consistent with a causal model represented by the DAG

a ch

(iii) q∗
1 is consistent with the true casual model represented by the DAG

a c h
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Thus, an agent who chooses the irrational action a = 1 is willing to pay the most

to learn the true model when he believes that this model is the one given by the

objectively true DAG (i.e., (DAG Γ), where the action has no effect on the outcome,

and both the action and the outcome influence the chemical level). Intuitively,

such a model would make the agent realize that choosing a = 1 is a mistake.

On the other hand, an agent who is actually choosing the rational action (al-

beit for the wrong reason) is willing to pay the most to learn the true model when

he believes that this model would reveal that the action affects both the outcome

and the chemical level – and, for high k, that the health outcome also influences

the chemical level. Intuitively, such a model would convince him to take the sup-

plement, and hence, he would forego a high payoff if he didn’t learn the truth.

4 Sampling

In this section we apply our framework to a strategic environment where players’

beliefs about the mapping from actions to consequences are based on a sampling

procedure proposed by Osborne and Rubinstein (1998). The key idea is that play-

ers are unaware of the equilibrium distribution of consequences conditional on

their actions (moreover, a player may not even be aware that he is engaged in

a game). Instead, each player uses the following sampling procedure: For each

action, he draws K independent samples of realized payoffs generated by playing

that action in the game; he then associates each action with the average payoff

observed in the sample and chooses the action with the highest average payoff.

Suppose that each player receives the first sample for free, and has the option

to pay a cost c to obtain a second sample for each action. What we have in mind is

a setting where the player decides sequentially whether to pay for one additional

sample and is myopic in this decision – when considering whether to pay for a

second sample, he does not anticipate future opportunities to sample again. Thus,

if the player declines the second sample, he is left with only the initial one. In light

of this, would a player be willing to pay for this additional information? Our focus

in this section is primarily on identifying cases in which the answer is negative,

regardless of how small c is.

The setting. Following Salant and Cherry (2020) we focus on two-player sym-

metric binary action games (see Salant and Cherry (2020) for economic applica-

tions of sampling equilibrium in this class of games). Denote by A = {a,b} the
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a b

a uaa uab

b uba ubb

Table 2. Row player’s payoffs in a symmetric game

set of actions for each player. A player who chooses action x ∈ A while the other

player chooses y ∈ A receives a payoff of uxy = u (x, y)≥ 0. We restrict attention to

games without a dominant action. Table 2 depicts the row player’s payoffs.

A strategy for a player is a probability distribution over actions in A. Since

there are only two actions, such a distribution can be fully described by the prob-

ability with which the player chooses action a. We let αi denote the probability

that player i chooses action a.

At the outset, a player samples a realized payoff for each of his actions. This

payoff is generated by drawing an action from his opponent’s strategy. For exam-

ple, when player i samples a payoff for action a, he draws uaa with probability

α−i, and uab with probability (1−α−i). A sample sK is a list of K payoff pairs(
(uk

a,uk
b)

)
k=1,...K , where uk

a and uk
b denote the realized payoff from actions a and b

in the kth sample, respectively.

Given a sample sK = (
(uk

a,uk
b)

)
k=1,...K , define

ua(sK )= 1
K

K∑
k=1

uk
a ub(sK )= 1

K

K∑
k=1

uk
b (15)

In words, ua(sK ) and ub(sK ) are the average payoffs that were generated by ac-

tions a and b in the sample, respectively. A player who draws the sample sK will

prefer action a over b if and only if ua(sK )≥ ub(sK ) (with ties broken arbitrarily).

A steady-state – or a sampling equilibrium – is a probability distribution over

actions that satisfies the following fixed point property: the probability that ac-

tion a is played is equal to the probability that this action is associated with the

highest average payoff in the sample.15 A single-sample (or S1) equilibrium is

then defined as follows:

Definition. An S1 equilibrium is a distribution (α,1−α) over the actions (a,b),
15In what follows, we focus on non-degenerate cases in which each action is played with positive

probability. In such cases, the average payoff associated with each action is a random variable.
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a b

a 2 4

b 3 1

Table 3. Payoffs in a
symmetric game – an

example

a b

a 2 2

b 3 1

Table 4. A symmetric
game with an average-

preserving-spread action

a b

a 4 2

b 1 3

Table 5. A symmetric
game with main

diagonal dominance

where α equals the probability of drawing a sample s1 in which ua(s1) > ub(s1),
assuming that each player’s strategy is given by (α,1−α).

To illustrate this equilibrium concept, consider two players who play the binary

symmetric game shown in Table 3, where the entries represent the row player’s

payoffs. This game appears as Example 1 in Osborne and Rubinstein (1998).

In an S1 equilibrium, the probability α that a player chooses a is equal to the

probability that s1 ∈ {(2,1), (4,3), (4,1)}. Thus, α=α(1−α)+ (1−α).16

Suppose that a player is approached with the opportunity to pay a cost c and

obtain a second sample for each of his actions. To compute the maximal regret

from not taking the second sample, the player considers all possible average em-

pirical payoffs for each action following the new sample. To remain consistent

with the information he already possesses, the player cannot "forget" the payoff

he observed in the initial sample.

Mapping the setting to our framework. The set of actions is given by A =
{a,b} and the set of consequences is given by the set of payoffs Y = R. The “true”

mapping g faced by a player in an S1 equilibrium is given by

g (a) [uaa]= g (b) [uba]=α

where g (a) [z] denotes the probability that the distribution g (a) assigns to the

outcome z.

A type θ is defined by the realized payoff the player observes for each of his

actions in the initial sample s = (u1
a,u1

b). Because the player associates each ac-

tion with the average payoff it generates, a misspecified model simply maps each

action to a degenerate distribution that assigns probability one to a single num-

16The first term on the right-hand side is the probability of drawing 2 when a is sampled and 1
when b is sampled, given that the opponent chooses his first and second actions with probability
α and 1−α, respectively. The second term is the probability of drawing 4 when a is sampled.
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ber – the average payoff associated with that action. Thus, with a slight abuse of

notation, we have gθ(a) = u1
a and gθ(b) = u1

b. As noted above, the optimal action

for a player of type θ is given by aθ = a if and only if u1
a ≥ u1

b; otherwise, aθ = b.

Consider a player of type θ who is contemplating whether to take a second

sample for each action. The set of models that type θ deems possible after obtain-

ing a second sample, Gθ, includes all mappings from actions to empirical averages

of payoffs that could possibly result from a second sample. To be consistent with

his current knowledge, each average must incorporate the realized payoff from

the initial sample. Thus,

g̃ ∈Gθ ⇐⇒
 g̃(a) ∈ { 1

2 (u1
a +uaa), 1

2 (u1
a +uab)},

g̃(b) ∈ { 1
2 (u1

b +uba), 1
2 (u1

b +ubb)}
(16)

In words, a model g̃ is deemed possible for type θ = (u1
a,u1

b) if, after a second

sample, action a is mapped either to the average of the observed payoff, u1
a, and

the “new” payoff uaa, i.e., 1
2 (u1

a+uaa), or to the average of the observed payoff, u1
a,

and the “new” payoff uab, i.e., 1
2 (u1

a +uab). An analogous requirement applies to

the mapping of action b.

Non-willingness to pay for a second sample. Fix a type θ. For each model

g̃ ∈ Gθ, if type θ has no strict incentive to switch from aθ, then this type’s regret

from not adopting g̃ is zero, i.e. Rθ( g̃) = 0. If type θ has zero regret from not

adopting any admissible model in Gθ, then this type’s maximal regret is also

zero: R∗(Gθ) = 0. If for every type θ the maximal regret is zero, then no player is

willing to pay a positive amount for a second sample. In what follows we explore

conditions under which players are not willing to pay for a second sample.

Consider the example depicted in Table 4. In this game, no type would be

willing to pay a positive amount for a second sample. To see why, consider the

types who observed a realized payoff of 3 when sampling action b. These types

would choose action b if they do not sample again. However, even if they were to

obtain a second sample for each action, the outcome would never provide a reason

to switch actions. Hence, these types would not be willing to pay a positive amount

for a second sample. By similar reasoning, the types for whom the realized payoff

was 1 when they sampled the action b (and therefore, they would choose a without

a second sample), would also not be willing to pay for a second sample.

Note that this game has the property that there is a “safe” action that delivers

a constant payoff, and a “risky” action whose payoffs are an “average-preserving-
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spread” of the safe action’s payoffs. Formally, we say that an action y ∈ {a,b} is

an average-preserving-spread of action x ̸= y if uaa+uab = uba+ubb and uxa = uxb

while uya ̸= uyb. The next result shows that this property is both a necessary and

sufficient condition for ensuring that no type is willing to pay for a second sample.

Proposition 6. No type is willing to pay any positive amount for a second sample
if and only if one action is an average-preserving-spread of the other.

The proof of the “if” direction follows reasoning similar to that used in the

above example. The “only if” direction identifies the types and second-sample

realizations that would induce the player to switch actions in the absence of an

average-preserving relationship between the actions.

Proposition 6 establishes that in the absence of an average-preserving action,

there always exists a type for whom the maximal regret from not taking a second

sample is strictly positive. However, we show that in a certain class of games,

there exist S1 equilibria in which the probability that such a type is realized is

arbitrarily small.

We say that in a binary symmetric game, the main diagonal dominates the off
diagonal if min{uaa,ubb}>max{uab,uba}. Table 5 depicts an example. Under this

condition, we have the following result:

Proposition 7. Suppose that the main diagonal dominates the off diagonal.
Then, for any probability p there exists an S1 equilibrium in which the proba-
bility that a player is not willing to pay for a second sample is higher than p.

The idea behind the proof is to first identify types who are not willing to pay

for a second sample. Then, when the main diagonal dominates the off-diagonal, it

is possible to construct an S1 equilibrium in which the probability of such types

being realized is arbitrarily high.

Finally, we note that main diagonal dominance is not a necessary condition for

the result. However, in its absence, one can construct games that have a unique

S1 equilibrium in which, for example, each player uniformly randomizes between

the two actions. In such a game, the probability that a player is not willing to pay

for a second sample cannot exceed 0.25. An example of such a game is given by

the payoffs: uaa = 5, uab = 1, uba = 3, and ubb = 2.

Extending the above analysis to symmetric games with more than two actions

would follow the same type of reasoning. However, the necessary and sufficient

conditions for zero WTP may be more involved.
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5 Proofs

Proof of Proposition 1

Instead of maximizing Eq. (OBJ) over the domain of marginals H1
x and H2

x that

satisfy the constraint in Eq. (10), we solve the equivalent problem of maximizing

the objective in Eq. (OBJ) over the domain of joint distributions over [0,1]× [0,1],

whose marginals satisfy Eqs. (5) and (10). A solution to this problem is a pair,(
p∗

1 ,H∗)
, of a price and a joint distribution over the quality (φ) and seller’s ask

(x).

We start by considering the case where p∗
1 ≥ p0 (recall that p0 is the price that

solves Eq. (9)). To solve this problem, it is useful to partition the space [0,1]×[0,1]

into the following six subsets, as depicted in Figure 1:

Bi ≡
{
(φ, x) |φ ∈ Ci ∧ x ∈ (0, p0)

}
Mi ≡

{
(φ, x) |φ ∈ Ci ∧ x ∈ (p0, p)

}
Ti ≡

{
(φ, x) |φ ∈ Ci ∧ x ∈ (p,1)

}
For any joint distirubtion H over [0,1]× [0,1], and for each i = 1,2, denote by

µH(Bi),µH(Mi), and µH(Ti) the probability mass of the sets Bi, Mi, and Ti, re-

spectively, according to H. Hence, the conditional marginal distributions induced

by H can be computed as follows:

H i
x(p0)= µH(Bi)

µH(Bi)+µH(Mi)+µH(Ti)
and H i

x(p)= µH(Bi)+µH(Mi)
µH(Bi)+µH(Mi)+µH(Ti)

.

Moreover, in terms of these probability masses, the marginal constraint (5) im-

plies that:

µH(B1)+µH(M1)+µH(T1)= F(t) and µH(B2)+µH(M2)+µH(T2)= 1−F(t), (17)

whereas the marginal constraint (10) implies that:

µH(B1)+µH(B2)= F(p0) and µH(M1)+µH(M2)= F(p)−F(p0). (18)

Let H denote the set of joint distributions over qualities (φ) and asks (x),

whose marginals satisfy Eqs. (17) and (18). We can then rewrite the maximization

problem in Eq. (OBJ), restricted to the case that p∗
1 ≥ p0, as follows:
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max
p≥p0

[
max
H∈H

(
V1µH(M1)+V2µH(M2)

)
− pF(p)

]
+F(p0)p0. (19)

Recall that, by definition, V2 > V1. Moreover, given any price p ≥ p0, the con-

straint in Eq. (18) implies that the sum µH(M1)+µH(M2) is fixed. Hence, the dis-

tribution H∗ assigns as much probability as possible to µH(M2) “at the expense”

of the probability mass assigned to µH(M1).

Consequently, the optimal solution
(
p∗

1 ,H∗)
cannot satisfy F

(
p∗

1
)− F (p0) >

1−F (t). To see this, suppose that F
(
p∗

1
)−F (p0)> 1−F (t), and note that this im-

plies p∗
1 > p0. Moreover, the constraints in Eqs. (17) and (18) imply that the high-

est probability mass that H∗ can assign to the region M2 cannot exceed 1−F (t),
and therefore µH∗ (M2)= 1−F (t) and µH∗(M1)= (F(p∗

1)−F(p0))−(1−F(t)).17 Plug-

ging these into Eq. (19) we obtain that p∗ = argmaxp≥p0 F (p) (V1 − p). How-

ever, our assumption that p+F(p)/ f (p) is strictly increasing in p implies that the

derivative d
dp [F (p) (V1 − p)]= f (p) [V1 − (p+F (p) / f (p))] is negative for all p ≥ p0.

This is a contradiction for the optimal price p∗ being strictly above p0.

Therefore, the solution (p∗
1 ,H∗) must satisfy F(p∗

1)−F(p0) ≤ 1−F(t). The fact

that V2 > V1 and the constraints (17) and (18) then imply that µH∗(M1) = 0 and

µH∗(M2)= F(p∗)−F(p0).18 Substituting into Eq. (19), we obtain:

p∗
1 ∈argmax

p≥p0
F(p)(V2 − p)

subject to F(p)−F(p0)≤ 1−F(t)

Our assumption that p + F(p)/ f (p) is strictly increasing in p implies that the

function F(p)(V2 − p) has a unique extremum on [p0,1], which occurs at p̃ that

satisfies V2 = p̃ + F(p̃)/ f (p̃). Furthermore, this extremum is a maximum, and

p̃ ≥ p0. Therefore, p∗
1 = p̃, provided that F(p̃)−F(p0) ≤ 1−F(t). Otherwise, p∗

1 is

equal to the price p that solves F(p)−F(p0)= 1−F(t).

The proof in the case of p∗
1 < p0 is analogous and is therefore omitted.

Proof of Proposition 2

Suppose that the partition ((0, t), (t,1)) maximizes the buyer’s WTP. Let (p∗
1 ,H∗) be

the solution to the maximization problem in Eq. (OBJ), subject to the constraint

17Additionally, µH∗ (T2)=µH∗ (B2)= 0, µH∗ (T1)= 1−F(p∗
1) and µH∗ (B1)= F(p∗

0)
18Additionally, µH∗ (T2) and µH∗ (B2) satisfy 0 ≤ µH∗ (T2) ≤ 1−F(p∗), 0 < µH∗ (B2) < F(p0), and

µH∗ (T2)+µH∗ (B2)= (1−F(t))− (F(p∗)−F(p0)).
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in Eq. (10). Suppose, by contradiction, that F(p∗
1)−F(p0)< 1−F(t). By Proposition

1, this implies that V2 = p∗
1 +F(p∗

1)/ f (p∗
1), and therefore p∗

1 > p0.

Because H∗ is determined optimally given p∗
1 , we know from the proof of

Proposition 1 that the buyer’s maximal WTP, as presented in Eq. (19), can be

written as follows:

V2
(
F(p∗

1)−F(p0)
)− p∗

1F(p∗
1)+F(p0)p0. (20)

Recall that V2 ≡ Eφ∼F
(
v(φ,b) |φ ∈ C2

)
, where C2 = (t,1) is the second element

in the analogy partition. Therefore, by slightly increasing the boundary between

the partition elements from t to t+ > t, so that C2 = (t+,1), we increase the value

of V2. Holding (p∗
1 ,H∗) fixed, this change only increases the expression in Eq.

(20), while the inequality F(p∗
1)−F(p0)< 1−F(t+) still holds. Note, however, that

this new value of Eq. (20), which is computed when (p∗
1 ,H∗) is held fixed, is only a

lower bound to the buyer’s willingness to pay for the new analogy partition, which

is computed by solving the maximization problem in Eq. (OBJ), subject to the

constraint in Eq. (10), for the analogy partition
(
(0, t+), (t+,1)

)
. This contradicts

((0, t), (t,1)) being the partition that maximizes the buyer’s willingness to pay for

knowledge. The proof of the second case is analogous and is omitted. ■

Proof of Proposition 4

For agents who choose a = 0, we have

R∗
0 =max

q
[q(h = 1 | a = 1)−k− q(h = 1 | a = 0)]

which reduces to

R∗
0 =max

β

(
α−β
α

−k−
1
2 −α+β

1−α

)
Since the R.H.S. decreases with β, regret is maximized for the minimal β that

satisfies 1
2 −α+β≥ 0. This yields that β∗

0 =max{0,α− 1
2 } and implies that

R∗
0 =

{
2k(1−2k)

4k−1 i f k ≥ 1
3

2k2

1−2k i f k < 1
3

(21)

(note that both values are positive since k < 1
2 ).
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For agents who choose a = 1, we have

R∗
1 =max

q
[q(h = 1 | a = 0)− q(h = 1 | a = 0)−k]

which reduces to

R∗
1 =max

β

( 1
2 −α+β

1−α − α−β
α

+k

)
Since the R.H.S. increases with β, regret is maximized for the maximal β that

satisfies α/2−β≥ 0 and 1
2 −α+β≤ 1. Since α/2 <α+ 1

2 , the solution is β=α/2. It

follows that R∗
1 (k)= k. ■

Proof of Proposition 5

Proof of part (i). If k ≥ 1
3 , then q∗

0 satisfies

q∗
0(h = 1 | a = 1)= 1> 3k−1

4k−1
= q∗

0(h = 1 | a = 0)

and

q∗
0(c = 1 | a = 0,h = 0)= 4k−1

2k
while

q∗
0(c = 1 | a = 0,h = 1)= q∗

0(c = 1 | a = 1,h = 0)= 0

Proof of part (ii). If k < 1
3 , then

q∗
0(h = 1 | a = 1)= 1

2
> 0= q∗

0(h = 1 | a = 0),

q∗
0(c = 1 | a = 1,h = 0)= q∗

0(c = 1 | a = 1,h = 1)= 0, and

q∗
0(c = 1 | a = 0,h = 0)= q∗

0(c = 1 | a = 0)= 1
2

.

(note that the event (a = 0∧h = 1) has zero probability).

Proof of part (iii). Note that

q∗
1(h = 1 | a = 1)= q∗

1(h = 1 | a = 0)= 1
2

,

and that

q∗
1(c = 1 | a,h)= (1−a)(1−h).

■
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Proof of Proposition 6

Sufficiency. Without loss of generality, assume that the safe action is a, yielding a

payoff of z, i.e. uaa = uab = z. The two payoffs from the risky action b can then be

represented by uba = z+δ and uba = z−δ. Without loss of generality we assume

that δ ∈ (0, z].

In this setting, a type can be essentially characterized by the realized payoff

from sampling b. Consider first the “type” z+δ, who chooses b absent a second

sample. The realization of a second sample which is “maximally in favor of switch-

ing to a” is (z, z−δ). However, for this realization the average from both actions

is z, hence there is no strict incentive to switch.

Consider next the “type” z − δ, who chooses a absent a second sample. For

this to be most inclined to switch to b, the second sample realization should be

(z, z+δ). However, as before, even with this realization, the player has no strict

incentive to switch actions.

Necessity. Suppose first that uaa +uab ̸= uba +ubb and assume, by contradiction,

that no type is willing to pay for a second sample. This means that for each type

there is no realization of the second sample that would give a strict incentive for

that type to switch an action. Without loss of generality, assume that uaa > uba.

Since no action is dominated, this means that ubb > uab. Consider types (uaa,uba)

and (uab,ubb), who would choose the actions a and b, respectively, absent a second

sample. If for every realization of the second sample, these types have no strict

incentive to switch an action, then uaa+uab ≥ uba+ubb and ubb+uba ≥ uab+uaa.

But these two inequalities cannot both hold.

Suppose next that uaa +uab = uba +ubb but uaa ̸= uab and uba ̸= ubb. Without

loss of generality assume that uba is the maximal payoff. We consider two cases.

Case 1: uaa > uab. Consider type (uaa,uba), who chooses action b absent a second

sample. If this type would observe in the second sample the realization (uaa,ubb),

he would want to switch to action a because 2uaa > uaa +uab = uba +ubb.

Case 2: uaa < uab. Consider type (uab,uba), who chooses action b absent a second

sample. If this type would observe in the second sample the realization (uab,ubb),

he would want to switch to action a because 2uab > uaa +uab = uba +ubb. ■
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Proof of Proposition 7

Proof. Suppose that max{uaa,ubb} > max{uab,uba}. Without loss of generality

assume uaa = max{uaa,ubb}. Since no action is dominated, uab < ubb. We first

show that any distribution over {a,b} is an S1 equilibrium. There are two cases to

consider. If uab < uba, then the only event in which a player chooses a is that when

he sampled that action the realized payoff was uaa. If uab > uba, then the only

event in which a player chooses b is that when he sampled that action the realized

payoff was ubb. Both cases yield that any distribution over the two actions is an

S1 equilibrium.

If uaa + uab ≥ uba + ubb, then type (uaa,uba), who would choose a without a

second sample, is not willing to pay for a second sample. In this case, there is an

S1 equilibrium α>pp in which the probability that this type is realized is higher

than p. If uaa +uab < uba +ubb, then type (uab,ubb), who would choose b without

a second sample, is not willing to pay for a second sample. In this case there is

an S1 equilibrium α< 1−pp in which the probability that this type is realized is

higher than p. ■
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